Monday, December 29, 2014

How To Get Into An Animal Behavior Graduate Program: Deciding Where to Apply

Is the idea of grad school stressing you out?
Image by freedigitalphotos.net.
If you are contemplating applying to graduate school in scientific research, the choice of where to apply can feel overwhelming. Each scientific field can be broken down into countless sub-fields. Each sub-field has countless researchers studying countless topics. How do you know which to choose? What if your choices pigeon-hole your career before you even get it off the ground? What schools have the best programs? What if the schools I choose are too competitive for me to get into? Although these are legitimate concerns, choosing graduate programs to apply to doesn’t have to be so stressful… and it can even be fun.

As with most everything, the earlier you start your planning, the less stressed you will be when the time comes to act. As soon as you realize that you are considering graduate school for research, start a list of possible labs you may want to work in. This list should include: possible mentors, the universities and departments they are affiliated with, the topics they study, and the techniques they use. Later, as you start to narrow your list, you may also want to include information such as: where the school is located, financial support offered, the minimum GPAs required, test scores required, courses required and application due dates.

For many of us scientific researchers, the realization that we wanted to pursue research as a career came from the inspiration we got from discovering a particular study or scientific story. The source of your inspiration is a great place to start. Look up the study that inspired you and other similar studies by some of the same authors. Often, the head of the research lab (called the Principal Investigator or P.I.) is the last author listed in the research paper. The paper should also mention what university and department each author is affiliated with. Now, armed with names of researchers and schools, start web-surfing and filling in the details on your list. If you find other interesting papers, researchers, or schools, allow yourself to follow the leads and add to your list. Keep an open mind during this stage: Most researchers study a range of research topics that they often list on university-affiliated or personal websites; If you are interested in animal behavior, you could pursue a degree in Animal Behavior, Biology, Zoology, Ecology Evolution and Behavior, Psychology or even Neuroscience; And try not to eliminate any programs based on geography unless you know in your heart that if it were the only program to accept you that you still would not go. By the end of this process, if you have a list of 15-20 possible labs to apply to, you should be in good shape.

Once you have a list of possible labs, it is time to narrow down your list to the 6-12 labs you will actually apply to. Here are some factors to consider:

1. The most important factor in graduate student success is whether you can work well with your advisor. Some labs will list current or past lab members on their webpages. If you can find email addresses, email some lab members to get their opinion of the P.I.’s abilities as a mentor. You can also ask faculty members at your university or use social media sites such as Facebook or LinkedIn to find out if any of the potential advisors you are interested in has a reputation.

2. Look up each researcher’s publications and webpages to get a sense of that person’s past and present research topics. Obviously, it is important to find a research topic that can keep you interested for the 4-8 years that it will take you to complete your degree. If you are considering a career in academia, it is also important to consider the techniques that you may learn from a lab. Unfortunately, animal behavior research techniques alone are not very marketable to research labs looking for a Postdoc or Research Scientist, in part because it is hard to obtain grants for studying animal behavior alone. A combination of animal behavior techniques with techniques in physiology, ecology, or evolution will make you much more employable when you complete your degree.

3. The rank or reputation of the school may contribute to your marketability when you complete your degree. There are some reputable graduate program rankings, such as U.S. News and World Report’s annual ranking of schools. Their ranking of graduate programs in biology can be found here. You can also get a sense of a school’s reputation by the number of publications from faculty in the program in a given year. Again, faculty at your current school and social media sites can be helpful with this insight as well.

4. Most graduate programs in animal behavior offer financial support in the form of teaching assistantships (T.A.s) and research assistantships (R.A.s) that cover tuition, healthcare, and provide a stipend. However, the availability, pay, and time commitment of these positions are not always equal. Contact the departments you are interested in to find out what kind of financial support they provide to their graduate students and how reliably available the positions are.

5. The location of the school may be important to you, as you will live in this place for the 4-8 years that it takes you to complete your degree. However, you won’t get out much once you start your program, so it really doesn’t matter where you are anyway.

6. If you are concerned about your GPA, GRE scores, or lack of coursework, you can sometimes find minimum requirements for a program on their website. You can also call departments and ask.

Good luck and have fun with your list!

And for more advice on applying to graduate programs, go here.

Monday, December 22, 2014

Caught in My Web: Memory Regeneration, Fish Sex, and the Physics of Swimming

For this edition of Caught in My Web, we explore the science of swimming and other underwater oddities.

1. If you are pondering great questions in life, such as "How is swimming different between a sperm and a sperm whale?", then you are in luck. The physics of how size influences the ability to swim is explained by Aatish Bhatia on TEDEd.

2. Neil Hammerschlag, a shark scientist and blogger for National Geographic, discusses the use of satellite tags for shark research.

3. Phys.org explains the science of side-to-side fish movement.

4. Robert Krulwich at NPR talks about headless planarians that regenerate their heads and their memories.

5. And the Beckman Institute tells you why Nemo would have become a girl if he had not found his dad:


Monday, December 15, 2014

Science Beat: Round 3

Sometimes science just makes more sense with a beat. Last January, I shared with you some fun music videos on fish genetics, climate science, and sexual reproduction. In Round 2, we saw music videos on the periodic table, cellular respiration and muscles. Here are the competitors for Round 3:

Cellular Biology:



Anatomy and Physiology:



Taxonomy:



Vote for your favorite in the comments section below and check out other sciency song battles at Science Song Playlist, The Science Life, Science Beat and Science Beat: Round 2, Scientist Swagger and Battle of The Grad Programs!

And if you feel so inspired, make a video of your own, upload it on YouTube and send me a link to include in a future battle!

Monday, December 8, 2014

The Truth Behind Those Sleeping Bears (A Guest Post)

By Tabitha Starjnski-Schneider

Name some animals that hibernate.

Was the first one mentioned a bear? That’s understandable…you were probably told that bears go to sleep shortly before winter, stay asleep the entire winter, and wake up in early spring.

What if I told you that your teachers lied to you, and that bears don’t actually hibernate?! Not a true hibernation, at least.

For an animal to be considered a true hibernator, it actually needs to stay in a sleep state for months at a time (like during an entire season), but also lower its body temperature far below where most other animals barely survive. Such an animal thus hibernates by lowering its metabolism, dropping its body temperature, and passing, most commonly, much of the winter in this Rip Van Winkle state. The many challenges of enduring a long and strenuous season such as winter, while "sleeping" it away, are complicated, but here we talk about just a couple.

Something your teacher may have also told you was that bears are mammals, and therefore are "warm-blooded". That seems a little silly; all animals with blood are going to have warm blood. Bears are actually called endothermic, meaning they don’t have to rely on warming or cooling their bodies by outside forces such as the sun. While undergoing this sleep-state, bears possess internal and external temperature control. These animals slightly lower their heart rate and body temperature internally and minimize their external movements in an effort to save energy and conserve heat. Of course these periods of reduced heart rate, temperature and inactivity don’t actually last all winter, as with true hibernation, but only a few weeks at a time. This overall ability and state is called torpor, not true hibernation. And although there is debate over the definitions of each, most researchers believe there is enough of a difference to categorize them separately (like cat naps versus comas).

One of the reasons for taking these naps is as basic as why we grocery shop. When the environment changes in such a way that doesn’t suit an animal (i.e. an empty fridge), they can better survive by conserving energy and going inactive until food returns. Before napping however, each adult bear will begin to dig a den, hollow out a tree trunk, and/or find a cave to prepare for winter. Once tucked away in their little beds, they use these dens like a Thermos, retaining as much of their body heat as possible. For the most part, these giants go to sleep for a few weeks at a time, wake up to warm their bodies some, then fall back asleep. This occurs over the course of a winter season until spring arrives and the bear can reemerge into the re-warmed world outside.

There is another, more important reason why these bears slumber though. After breeding in spring/summer, these mammals begin their fall-time buffet, eating foods high in carbohydrates and fat to gain as much weight as possible. Why you ask? So that the mothers gain enough fat and energy to develop, birth, and feed their young while in the winter hideaways. Ever see the videos of polar bears emerging with their cubs from a snowy fortress in the side of a hill?


Now how could they ever give birth if they were sleeping the whole time? It’s the same with black bears and grizzly bears, for that matter.

It all sounds pretty cool right? These mama bears should be given a medal for their dedication. And the next time someone refers to bears hibernating, you can assuredly respond that they actually enter a state of torpor, or winter-long cat naps.

Monday, December 1, 2014

Crocodilians Hunt With Tools!

A crocodile lures in birds with sticks that would make a nice nest.
Photo by Dinets published in Ethology, Ecology & Evoluton 2013.
What would happen to mankind if crocodiles and alligators were to develop enough intelligence that they could hunt with tools? Would we see the rise of new dominant species as in Rise of the Planet of the Apes?

Well, shudder in your boots, people, because we are already there!

This week at Accumulating Glitches I talk about the discovery of how at least two species of crocodilians use tools to lure in prey. Check it out here.


And to learn more, check this out:

Dinets, V., Brueggen, J.C.. and Brueggen, J.D. Crocodilians use tools for hunting, Ethology Ecology & Evolution, (2013). DOI: 10.1080/03949370.2013.858276.